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Model-based Reinforcement LearningA loop that alternates between:

•Experience Collection
•Model learning
•Policy learning

The update frequencyThe number of steps before updating the policy parameters.
Examples:

• Systems constraining the policy to be updated every once
in a while.

•Real-time learning for Robotics applications.

IN MBRL, THE UPDATE FREQUENCY IS:
•IMPLICIT
•CONFOUNDING
•UNDERSTUDIED

THIS IS A PROBLEM.

Specifically:•The update frequency choice is rarely made explicit in the literature
•Comparisons between algorithms often do not fix the update frequency
•MBRL papers often lack ablation studies on the update frequency

Read the full blogpost

Guidelines for the update frequency•The update frequency should also
be regarded as a system constraint
rather than a design choice

•Make it explicit
•Fix it when comparing with other
algorithms

• If possible, provide an ablation
study showing its impact on the
performance of your algorithm

Experiments with MBPO
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Update frequency for MBPO on HalfCheetah

1 step (default)
1000 steps
5000 steps
10000 steps
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Update frequency for MBPO on Hopper
1 step (default)
1000 steps
5000 steps
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Update frequency for MBPO on Walker2d
1 step (default)
1000 steps
5000 steps
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