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MBRL Problematic: Compounding errors @

Problem Setup

Goal: given a dataset of real system trajectories, learn a
parametric model of its transition function.
m Input [s;,a;] € R%t9e target s, 1 € R%,
= Training set of IV trajectories D = {(s}, ad, si,...)} Y,
m Train a model pg: R%tda — R that minimizes the MSE
loss (or NLL).
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Solution: Weighted Multi-Step Loss

m horizon-dependent weights o = («, ..., ay) with
Z?:l a; =1,
m a single-step loss function L (MSE),

m an initial state s, an action sequence a; = a;.4+x—1, and the
real (ground truth) visited states s; = sy 1.414,

Given the elements above, we define the weighted multi-step loss
of horizon h as:

h

Lk (sr,Po(st,ar)) = Z OéjL(St+j,ﬁ§(8t, apitj—1))
j=1
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Schematic representation
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Results: Predictive error on offline datasets @

= setup. noisy observations o; = s; + ¢; with ¢; ~ N(0, 0?)

= Metric. aggregated R2 score R2(H) = + Z,Il{:l R2(h)

m Benchmark. Environments (Cartpole swingup, Halfcheetah,
Swimmer), Datasets (random, medium, replay)

cartpole - random cartpole - mixed_replay cartpole - full_replay swimmer - random
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Results: Offline MBRL &

agent. Dyna-style using Soft Actor-Critic (SAC) a la MBPO

h = 1. the baseline

m h = h - R2. we select the optimal 3 value in grid search
based on the R2 metric

m h = h - return. we select the optimal 3 value in grid search

based on the return of the agent

task. Cartpole swing-up mixed replay dataset, with two levels
of noise 0% and 1%

noise = 0.0 noise = 0.01
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Conclusion @

m In MBRL, Models face compounding errors and a distribution
mismatch at test time

m The Weighted Multi-Step loss is a way to solve this problem

m Although it improves the predictive error, it doesn’t
necessarily lead to better policies

Take Home Message

The Weighted Multi-step loss is useful to improve the
predictive error down the horizon.
— But is this a good metric for model selection in MBRL 7!

[Benechehab et al., 2024]
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