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e Models face compounding errors and a distribution mismatch at test time
e The Weighted Multi-Step loss is a way to solve this problem

o Although it improves the predictive error, it doesn't necessarily lead to better
policies

Problem Setup

Goal: given a dataset of real system trajectories, learn a parametric model of its transition
function.

e Input [s;, a;] € R%T% target s, € R%,
)L
e Train a model py: R%*H — R% that minimizes the MSE loss (or NLL).

e Training set of N trajectories D = {(s},al, s, ...

Single-step error Multi-step error

99% R2 Please help, errors are

compounding!

Compounding errors

e At training time: the model only sees single-step transitions s;.1 ~ Pruel(.|St, az),
o At test time: generate long rollouts recursively 8. ; ~ Do(.|8ij-1, ar4j-1),

e Distribution mismatch training s; ~ pyue test s; ~ Py,

e Compounding errors py(.|Ds(.|5i+j—2, Gr+j—2), Q14 j—1)
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Solution: Weighted Multi-Step Loss

e horizon-dependent weights a = (a, . . .,
e a single-step loss function L (MSE),

ap) With S o = 1,

e an initial state s;, an action sequence a, = a;;,;_1, and the real (ground truth) visited states

St = St41:t+h

o we define the weighted multi-step loss of horizon h as:

h
LZ (S7'7 ﬁ@(st, aT)) —

7=1

How to choose the weights a.

e Uniform. a; = 1/h The simplest choice,

e B-Decay. o; = -3/ Inspired by the error growth
profile
e Learn. o, = learnable (Not well defined)

1

L(5t+j7ﬁg(3t73t:t+j))
equally-important, regardless of the ampilitu

e Proportional. o; ~

all terms are

de

2 O‘jL(SHjaﬁg’(Sta at:t+j—1)>
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— p=01 —— B=025 —— B=05 —— B=075 —— B=0.9 —— B=1.0 (uniform)

e setup. noisy observations o; = s; + ¢; with ¢ ~ N (0, %)

e Metric. aggregated R2 score R2(H)

— % Zf{{:l R2(h)
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Theoretical insights: uni-dimensional linear system

o System. St41 = Qtrue - S¢ and Ot+1 = St4+1 T €t+1 with €1 " N(O, 0'2)

e Problem. \We study the minimizers §(«) € argmin, L (0, pg(s;)) Where

Lq (Omﬁe(st)) = a(fs; — op41)
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Insights:

e o = 1. the minimizer is unbiased: EetHNN(o,az)[@Al]

— Htrue

a

e o = 0. the minimizer Is biased but has lower variance under some

conditions
e a € (0,

Experimental Results

e Benchmark. Environments (Cartpole swingup, Halfcheetah, Swimmer), Datasets (random, medium, replay)
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Offline MBRL

e agent. Dyna-style using Soft Actor-Critic (SAC) a la MBPO
e h = 1. the baseline
e h = h - R2. we select the optimal § value in grid search based on the R2 metric

e h = h - return. we select the optimal § value in grid search based on the return of the
agent

e task. Cartpole swing-up mixed replay dataset, with two levels of noise 0% and 1%
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Insights:

e \We can have a small improvement over the baseline using the weighted multi-step loss
e Large values of the loss horizon h do not work in practice

e |In the noisy variant, noise is probably too large to learn any meaningful policy

e More experiments are needed to conclude

Take Home Message

The Weighted Multi-step loss is useful to improve the predictive error down the
horizon.
— But is this a good metric for model selection in MBRL ?!

Want to Know More?
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