

TL;DR

- Models face compounding errors and a distribution mismatch at test time
- The Weighted Multi-Step loss is a way to solve this problem
- Although it improves the predictive error, it doesn't necessarily lead to better policies

Problem Setup

Goal: given a dataset of real system trajectories, learn a parametric model of its transition function.

- Input $[s_t, a_t] \in \mathbb{R}^{d_s + d_a}$, target $s_{t+1} \in \mathbb{R}^{d_s}$,
- Training set of N trajectories $\mathcal{D} = \{(s_0^i, a_0^i, s_1^i, \ldots)\}_{i=1}^N$,
- Train a model $\hat{p}_{\theta} \colon \mathbb{R}^{d_s + d_a} \to \mathbb{R}^{d_s}$ that minimizes the MSE loss (or NLL).

Single-step error

99% R2

Multi-step error

Please help, errors are compounding!

Compounding errors

- At training time: the model only sees single-step transitions $s_{t+1} \sim p_{true}(.|s_t, a_t)$,
- At test time: generate long rollouts recursively $\hat{s}_{t+j} \sim \hat{p}_{\theta}(.|\hat{s}_{t+j-1}, a_{t+j-1})$,
- Distribution mismatch training $s_t \sim p_{true}$, test $s_t \sim \hat{p}_{ heta}$,
- Compounding errors $\hat{p}_{ heta}(.|\hat{p}_{ heta}(.|\hat{s}_{t+j-2},a_{t+j-2}),a_{t+j-1})$

A Study of the Weighted Multi-step Loss Impact on the Predictive Error and the Return in MBRL

Albert Thomas¹ **Giuseppe Paolo**¹ Abdelhakim Benechehab 12

¹Huawei Noah's Ark Lab ²Department of Data Science, EURECOM ³Statistics Program, KAUST

Solution: Weighted Multi-Step Loss

- horizon-dependent weights $oldsymbol{lpha}=(lpha_1,\ldots,lpha_h)$ with $\sum_{i=1}^h lpha_i=1$,
- a single-step **loss function** L (MSE),
- an initial state s_t , an action sequence $\mathbf{a}_{\tau} = \mathbf{a}_{t:t+h-1}$, and the real (ground truth) visited states $\mathbf{s}_{ au} = \mathbf{s}_{t+1:t+h}$,
- we define the weighted multi-step loss of horizon h as:

$$L^{h}_{\boldsymbol{\alpha}}(\mathbf{s}_{\tau}, \hat{p}_{\theta}(s_{t}, \mathbf{a}_{\tau})) = \sum_{j=1}^{h} \alpha_{j} L(s_{t+j}, \hat{p}_{\theta}^{j}(s_{t}, \mathbf{a}_{t:t+j-1}))$$

How to choose the weights lpha.

- **Uniform.** $\alpha_j = 1/h$ The simplest choice,
- β -Decay. $\alpha_j = \frac{1}{Z}\beta^j$ Inspired by the error growth profile
- Learn. $\alpha_i = learnable$ (Not well defined)
- Proportional. $\alpha_j \sim rac{1}{L\left(s_{t+j}, \hat{p}_{\theta}^j(s_t, \mathbf{a}_{t:t+j})\right)}$? - all terms are equally-important, regardless of the amplitude

Experimental Results

10

0.02

- setup. noisy observations $o_t = s_t + \epsilon_t$ with $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$
- Metric. aggregated R2 score $\overline{R2}(H) = \frac{1}{H} \sum_{h=1}^{H} R2(h)$
- Benchmark. Environments (Cartpole swingup, Halfcheetah, Swimmer), Datasets (random, medium, replay)

Maurizio Filippone 3

Balázs Kégl¹

Theoretical insights: uni-dimensional linear system

- System. $s_{t+1} = \theta_{true} \cdot s_t$ and $o_{t+1} = s_{t+1} + \epsilon_{t+1}$ with $\epsilon_{t+1} \sim \mathcal{N}(0, \sigma^2)$
- **Problem.** We study the minimizers $\hat{\theta}(\alpha) \in \arg \min_{\theta} L_{\alpha}(\mathbf{o}_{\tau}, \hat{p}_{\theta}(s_t))$ where

 $L_{\alpha}(\mathbf{o}_{\tau}, \hat{p}_{\theta}(s_{t})) = \alpha(\theta s_{t} - o_{t+1})^{2} + (1 - \alpha)(\theta^{2}s_{t} - o_{t+2})^{2}$

swimmer - random

0.0 - 0.5 - 1.0

Offline MBRL

- **agent**. *Dyna*-style using Soft Actor-Critic (SAC) a la MBPO
- $\mathbf{h} = \mathbf{1}$. the baseline
- h = h R2. we select the optimal β value in grid search based on the R2 metric
- h = h return. we select the optimal β value in grid search based on the return of the agent
- **task.** Cartpole swing-up mixed replay dataset, with two levels of noise 0% and 1%

insights:

- We can have a small improvement over the baseline using the weighted multi-step loss
- Large values of the loss horizon h do not work in practice
- In the noisy variant, noise is probably too large to learn any meaningful policy
- More experiments are needed to conclude

Take Home Message

The Weighted Multi-step loss is useful to improve the predictive error down the horizon.

 \rightarrow But is this a good metric for model selection in MBRL ?!

Want to Know More?

Main References

- MBPO, Janner et al. Neurips 2019 When to Trust Your Model: Model-Based Policy Optimization
- Lambert et al. arXiv:2203.09637 2022 Investigating Compounding Prediction Errors in Learned Dynamics Models
- Benechehab et al. ICBINB workshop at RLC 2024 (this work) A Study of the Weighted Multi-step Loss Impact on the Predictive Error and the Return in MBRL