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TL;DR

• Models face compounding errors and a distribution mismatch at test time

• The Weighted Multi-Step loss is a way to solve this problem

• Although it improves the predictive error, it doesn’t necessarily lead to better
policies

Problem Setup

Goal: given a dataset of real system trajectories, learn a parametricmodel of its transition
function.

• Input [st, at] ∈ Rds+da, target st+1 ∈ Rds,

• Training set of N trajectories D = {(si
0, ai

0, si
1, . . .)}N

i=1,

• Train a model p̂θ : Rds+da → Rds that minimizes the MSE loss (or NLL).

Compounding errors

• At training time: the model only sees single-step transitions st+1 ∼ ptrue(.|st, at),
• At test time: generate long rollouts recursively ŝt+j ∼ p̂θ(.|ŝt+j−1, at+j−1),
• Distribution mismatch training st ∼ ptrue, test st ∼ p̂θ,

• Compounding errors p̂θ(.|p̂θ(.|ŝt+j−2, at+j−2), at+j−1)

Solution: Weighted Multi-Step Loss

• horizon-dependent weights α = (α1, . . . , αh) with
∑h

i=1 αi = 1,
• a single-step loss function L (MSE),

• an initial state st, an action sequence aτ = at:t+h−1, and the real (ground truth) visited states
sτ = st+1:t+h,

• we define the weighted multi-step loss of horizon h as:

Lh
α

(
sτ , p̂θ(st, aτ)

)
=

h∑
j=1

αjL
(
st+j, p̂j

θ(st, at:t+j−1)
)

How to choose the weights α.

• Uniform. αj = 1/h The simplest choice,

• β-Decay. αj = 1
Zβj Inspired by the error growth

profile

• Learn. αj = learnable (Not well defined)

• Proportional. αj ∼ 1
L
(

st+j,p̂
j
θ(st,at:t+j)

) all terms are

equally-important, regardless of the amplitude

Theoretical insights: uni-dimensional linear system

• System. st+1 = θtrue · st and ot+1 = st+1 + ϵt+1 with ϵt+1 ∼ N (0, σ2)
• Problem. We study the minimizers θ̂(α) ∈ arg minθ Lα

(
oτ , p̂θ(st)

)
where

Lα

(
oτ , p̂θ(st)

)
= α(θst − ot+1)2 + (1 − α)(θ2st − ot+2)2
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insights:

• α = 1. the minimizer is unbiased: Eϵt+1∼N (0,σ2)[θ̂1] = θtrue

• α = 0. the minimizer is biased but has lower variance under some
conditions

• α ∈ (0, 1). provides the best bias-variance tradeoff empirically

Experimental Results

• setup. noisy observations ot = st + ϵt with ϵt ∼ N (0, σ2)
• Metric. aggregated R2 score R2(H) = 1

H

∑H
h=1 R2(h)

• Benchmark. Environments (Cartpole swingup, Halfcheetah, Swimmer), Datasets (random, medium, replay)
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Offline MBRL

• agent. Dyna-style using Soft Actor-Critic (SAC) a la MBPO

• h = 1. the baseline

• h = h - R2. we select the optimal β value in grid search based on the R2 metric

• h = h - return. we select the optimal β value in grid search based on the return of the
agent

• task. Cartpole swing-up mixed replay dataset, with two levels of noise 0% and 1%
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insights:

• We can have a small improvement over the baseline using the weighted multi-step loss
• Large values of the loss horizon h do not work in practice
• In the noisy variant, noise is probably too large to learn any meaningful policy
• More experiments are needed to conclude

Take Home Message

The Weighted Multi-step loss is useful to improve the predictive error down the
horizon.
→ But is this a good metric for model selection in MBRL ?!

Want to Know More?
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